Camber Compensation & Anti-Roll is an innovative update of the double-wishbone suspension system that cleverly avoids the major camber (and footprint) compromises normally found in such systems to provide a number of significant advantages - including greater grip.

At the heart of the system is a straightforward linkage assembly that constantly maintains the best possible contact between tyre and road during all grip-critical modes of operation (accelerating/braking and/or cornering).


The front Camber Compensation & Anti-Roll suspension system of the new XCS 427 with its dedicated CC&AR billet aluminium uprights.


This contrasts sharply with a conventional double-wishbone system where the geometry will at best provide optimum contact in only one such mode – i.e. in cornering or in accelerating/braking – but never in both.

Other benefits of CC&AR include reduced roll, much improved composure/predictability, a higher roll centre (without incurring jacking force issues) and the ability to retain a supple ride, both for road and track.  More detailed information can be found in the 'How It Works' section.


STOP PRESS * * * What an achievement! * * * STOP PRESS

Straight to the top of the MSV 'How Fast'  leaderboard - first time out and on a damp track! That's the way to do it Duncan!!

There's no need to ask if Duncan Cowper had a good time on Saturday 31st October when he was given the opportunity to pilot his legendary DAX Rush MC Hayabusa Turbo around the Bedford Autodrome circuit for three laps, courtesy of Evo Magazine's ‘How Fast Day’.

The track remained damp from earlier rain and had a nasty patch of standing water but Duncan still managed to set an amazingly quick lap time of just 1:14.89.  More than enough to catapult him straight to the top of the MSV 'How Fast' Leaderboard, outstripping previous leader Andy Chittenden in his Radical SR1 by a full 3.61 seconds (Andy's time also being set in the damp).

A truly remarkable performance by any standards, let alone for a road-going sports roadster!

Click here if you'd like to be taken to YouTube and some onboard footage.

Duncan pictured with Geoff Page, left (www.geoffpageracing.com/) and Sam Borgman, right (http://www.tdi-plc.com/)


The very first track car to benefit from the patented CC&AR system was the Rover V8 powered DAX Rush of Andy Sterling.Andy's Rush had been built as a road-going car and could sometimes be seen in and around his home town of Brockenhurst, Hampshire. But its main purpose was to allow Andy to compete in the highly-competitive Class 'A' of the 750 Motor Club championship.

The car had started life as a normal IRS Rush but about halfway through the season, Andy decided to have it fully converted to CC&AR, front and rear. From that moment on, Andy and the DAX formed an uncommonly successful partnership.

Andy gained eight pole positions out of eight and won six of the remaining (eight) races of the season, only narrowly missing out on the championship title due to two incidents with another competitor – on both occasions when in the lead.

In the following year the Sterling-Rush partnership returned to make a clean sweep of the board, winning every race to take both the Class 'A' and overall 750 Motor Club titles.

Even more impressively, after a 3-year break, Andy returned in 2005 to do it again!

Keeping it in the family, Andy's brother Charles then borrowed the DAX for the 2006 and 2007 seasons. While still getting to know the car in 2006, Charles exceeded his highest expectations and took the Class 'A' title at his very first attempt. He was again at the top of the leaderboard in 2007 when an unfortunate accident sadly saw the car destroyed by fire – fortunately without injury to Charles.

When asked about what it was like to drive with CC&AR, Andy said, "The effect of adding the CC&AR system to both front and rear was staggering. At Cadwell short circuit on the same tyres that I'd used 8 months previously, my lap times fell by 4 seconds!"

"The ability to brake later than cars of 510 kg, as opposed to my 720 kg, was primarily down to the car's capacity for braking hard through turn to apex." he continued, "This allowed me to brake anything up to 20 metres later and the balance was so good that the car could be abused and always come back."









Following the success of the CC&AR system on their DAX Rush model, DJ Sportscars International Ltd extended their under-license use to the front end of their market-leading Cobra replica, the DAX Tojeiro.


How It Works




What are the main limitations of conventional double-wishbone suspension systems?

In essence, a tyre that is held in optimum contact with the road will have its tread used in uniform shear and so withstand the greatest possible loading and provide the highest possible grip. It is obviously therefore vitally important that optimum contact is provided whenever maximum grip is likely to be a requirement and particularly during acceleration/braking and/or cornering. But it is precisely during these modes of operation that the footprint of a conventional double-wishbone suspension system becomes compromised.


The Camber Compensation & Anti-Roll front suspension system of the DAX Tojeiro (Jaguar XJ40/X300 - based).


The almost universally adopted unequal-length double-wishbone design can achieve quite effective camber correction when in roll (cornering) by means of its shorter upper wishbones and the tighter arcs that they describe. However, this direct link between camber change and suspension movement obviously can't be miraculously broken when the vehicle starts to travel in a straight line. As a result, unwanted camber changes occur as the suspension compresses under acceleration or braking that inevitably compromise grip. The way to reduce these unwanted camber changes has traditionally been to inhibit suspension movement by substantially increasing spring rates and/or building in further geometric compromise. Both methods, in themselves, having negative implications for grip with ride quality being an early casualty on all but the smoothest of surfaces.

Alternatively, a double-wishbone suspension system that has parallel arms of equal length is clearly capable of providing an excellent footprint with the road when the vehicle is traveling in a straight line. Cornering performance however is certain to be severely compromised due to the adoption of adverse camber when in roll. Similarly, the only solution is to try to eliminate body/chassis roll (not helped by the very low roll centre provided by such a system) and with obvious consequences for ride quality and ultimate grip, as above.

What does the CC&AR system do that a conventional double-wishbone suspension system doesn't?

The CC&AR system essentially ensures that the best possible contact is provided between tyre and road regardless of whether the vehicle is accelerating/braking and/or cornering. No longer is it necessary to sacrifice performance in one mode of operation in order to maximise that in another.

In particular, braking/tractive performance and general predictability/control (even at and beyond the limits of adhesion) are all noticeably enhanced when compared to a conventional unequal-length double-wishbone design.

Springing can be kept softer with additional benefit to both grip (particularly on uneven and/or wet surfaces) and of course to ride quality.

Roll is effectively countered (again without loss of ride quality) due to the system's naturally high roll centre and by making use of the forces generated during cornering. Further details of this and other CC&AR system benefits can be seen in our 'How It Works' section.


An example of a CC&AR front suspension system with inboard coil-over dampers – as featured at the front end of Duncan Cowper's latest DAX Rush MC Hayabusa turbo.


Do the wheels of a vehicle using the CC&AR suspension system always remain upright, even when cornering?

It depends. In a rear application of CC&AR, the system would normally be configured to keep the wheels perpendicular to the tarmac at all times. For a front application, however, the system can usefully be configured to provide different camber in different modes of operation.

The CC&AR systems designed for the front of the XCS 427, DAX Rush and Tojeiro, for instance, are configured to provide a small and unchanging amount of negative camber when traveling in a straight line which is supplemented on lock through the interaction of caster and KPI. No anti-roll bars are fitted or required as is the norm for CC&AR equipped cars.

Visitors to the site may be interested in clicking on the following two links - link1, link2.   Both will take them to YouTube and some motion footage, posted by DAX Rush owners, of the CC&AR systems fitted to the front of their DAX Rushes.  One One is of Jason Baker's Honda S2000-powered Rush and the other of a French gentleman's Hayabusa-powered Rush MC.


Does the CC&AR system provide perfect contact in every situation?

No, it is obviously impossible for any suspension system to take account of every imperfection in the road surface but CC&AR will naturally provide a predetermined average that is hugely closer to the ideal than any conventional suspension design.

Clearly, one of the greatest strengths of the CC&AR system is its innate ability to provide the best possible geometry (and footprint) on all occasions where maximum grip may be required – i.e. during acceleration/braking and/or cornering.

In fact, it is only during the lesser event of one-wheel bump that the CC&AR system is not able to improve upon the geometry of a conventional double-wishbone design. And as the inputs here are by definition momentary and invariably of much lower magnitude, it is perhaps not surprising that this has not been found to be of consequence.

Indeed, those racing CC&AR equipped cars will invariably make special mention of the superior grip and composure provided over rumble strips – in part due to the much softer springing allowed by the system. (See the link provided in the answer below.)

The spring rates used on a typical CC&AR track car can appear unusually soft. Whatever the benefits, doesn't this make the car more difficult for the driver to control?

Surprisingly for those unfamiliar with CC&AR, the answer is no.

Even when softly sprung the CC&AR system will always provide a notably constant footprint and a low level of roll.  Good composure, predictability and control are all natural and strong system characteristics and it is unnecessary (and, for obvious reasons, counterproductive) to follow the usual practice of fitting springs with ultra high rates for track use.

You may like to click on the following link.  It will take you to YouTube and some in-car footage recorded over a couple of laps of the Bedford Autodrome circuit aboard Duncan Cowper's Hayabusa turbo Rush.

In fact, it was one of these laps on a still damp track that secured Duncan the top spot on the MSV ‘How Fast’ leaderboard in October 2015 with an amazing time of just 1minute 14.593seconds.  An incredible achievement for a road-going sports roadster - albeit one with 340bhp on tap at 1.1bar of boost!

Of particular relevance to the viewer here are the softness of the springing, the lack of roll (no anti-roll bars fitted) and the general level of composure provided – especially over rumble strips.


An earlier incarnation of Duncan Cowper's DAX Rush MC Hayabusa Turbo pictured with a fairly typical array of boys' toys in the workshops of Geoff Page Racing.

Can CC&AR be fitted to any car as an alternative to a conventional unequal-length double-wishbone system?

Yes normally, but the upright used must meet specific requirements to be suitable for use in a CC&AR suspension system and the geometry of the system itself obviously differs from application to application and needs to be established for each. There must also be sufficient room for the system’s cross-links to be accommodated – but this is rarely a concern.